CCAM Biophysics
Biological Signaling Platforms
Loew, Mayer
Experimental manipulation of the location, size, and composition of signaling complexes is essential for building and validating quantitative models of spatially organized signaling networks and pathways. Researchers at CCAM are developing standardized methods to experimentally manipulate local concentrations and stoichiometries of membrane-bound and cytosolic signaling complexes (signaling platforms) in living cells. Experimentally manipulating the subcellular localization and/or local concentration of a factor in living cells provides insight to its function and resulting effects on biological activity. CCAM faculty use biological aggregrates, nano-fabrication and optical force to manipulate and study components of signaling networks. An example of a biological singaling platform is the creation of fusion transmembrane proteins that can be aggregated at the plasma membrane by monoclonal antibodies.